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We consider the thermocapillary motion of a well-mixed suspension of non-conducting 
spherical bubbles of negligible viscosity in a viscous conducting liquid under conditions 
of vanishingly small Reynolds and Marangoni numbers. Recently, Acrivos, Jeffrey & 
Saville (1990) showed that when all the bubbles are of identical size, the ensemble- 
averaged migration velocity U, of a test bubble of radius a, within the suspension 
equals Uio)[l -;c, + O(c:)], where c, is the volume fraction of the bubbles and Ujo) is 
the thermocapillary velocity of a single bubble given by Young, Goldstein & Block 
(1959). Here we extend this result to a bi-disperse suspension containing bubbles of 
radii a, and a2 = ha, in which case U, = Uio)[l -:cl - S(h) c2 + . . .I, where c1 and c2 are 
the corresponding volume fractions of the two sets of bubbles. Values for S(h) 
are presented for some typical size ratios A, and asymptotic expressions for S(h) are 
derived for h --f 0 and for h + co. 

1. Introduction 
A cloud of bubbles suspended in a viscous liquid of non-uniform temperature will 

move towards the hotter fluid, owing to the dependence of surface tension on 
temperature. In addition to its importance from a fundamental point of view, this effect 
has taken on a new practical significance in that, under near-weightless conditions, it 
offers the only technique presently available for removing unwanted gas bubbles from 
a liquid solution. This in turn is a crucial step in the manufacturing process of ultra- 
high-purity materials in outer space. 

The thermocapillary motion of a single drop having arbitrary values of its thermal 
conductivity and viscosity relative to those of the ambient liquid was studied by 
Young, Goldstein & Block (1959) under conditions of vanishingly small Reynolds and 
Marangoni numbers. More recently, that study was extended to the case of two 
bubbles or drops by, among others, Meyyappan & Subramanian (1984) and Anderson 
(1985) via the direct reflection method, and by Satrape (1992) using the method of twin 
multipole expansions, all of whom showed that, when the surface tension is high 
enough to keep them spherical, two equi-sized bubbles move with the same velocity as 
one isolated bubble. Acrivos, Jeffrey & Saville (1990) extended this result by proving 
that it continues to hold for any number of equi-sized bubbles. Moreover, those 
authors showed that the velocity field is irrotational and that its velocity potential is 
uniquely related to the temperature, so that the hydrodynamic and thermal two-body 
interactions exactly cancel each other. 

On the other hand, when the two bubbles have different radii, the hydrodynamic and 
thermal effects no longer cancel each other so that the particle velocities (now different 



48 Y. Wang, R. Mauri and A .  Acrivos 

from each other) will depend on the distance between the two bubbles, their orientation 
relative to the direction of the applied temperature gradient and on the ratio of their 
radii. 

In this paper we wish to calculate the average velocity of a test bubble in a dilute 
suspension of bubbles having a different size. The renormalization technique developed 
by Jeffrey (1973) is applied to this problem, extending the result of Acrivos et al. (1990), 
who considered monodisperse suspensions. The paper is organized as follows. After 
formulating the problem in $2, the mobility functions for two bubbles with arbitrary 
size ratio and arbitrary orientation relative to the imposed temperature gradient are 
obtained in $ 3  using the twin multipole expansion method developed by Jeffrey & 
Onishi (1 984). These mobility functions, expanded in terms of the interparticle distance 
and size ratio, are then employed in $4 to find the average bubble velocity by making 
use of a renormalization technique described by Acrivos et al. (1990). Finally in $ 5 ,  
asymptotic expressions for the average bubble velocity are obtained in the limiting 
cases where the size ratio is either very large or very small. 

2. The governing equations and a relation for a special case 
A cloud of N bubbles suspended in an unbounded fluid of viscosity p, density p and 

thermal diffusivity E will move under the influence of a non-uniform ambient 
temperature field T,, due to the temperature dependence of the surface tension of the 
bubble-fluid interface. We assume that y,, the surface tension of any bubble 
i (i = 1,2, .  . . , N ) ,  decreases linearly with the temperature T and is large enough to 
keep each bubble spherical with radius a,. We also suppose that both the Reynolds 
number Re and the Marangoni number M a  are small, with Re =pa,U/,u and 
M a  = a, U / Z ,  where U denotes a characteristic velocity. 

For the quasi-steady-state case being considered here, the governing equation and 
boundary conditions for the temperature field T are given by 

V2T = 0, (1) 

T+T, as p,+co, (2) 

n, .VT = 0 on pi = a,, (3) 

where pi = IpJ, with pi denoting the position vector referred to the centre of the ith 
bubble, T, is the unperturbed temperature field which also satisfies Laplace's equation, 
while ni is a unit vector normal to the surface of the ith bubble. 

Similarly, the velocity field u and pressure field p satisfy 

1 

lu. 
v2u = -vp, 

v.u = 0, 

u+u, as p,+co, 

ni .u  = n . .  U .  on pi = a,, 
1 2  

(4) 
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where Q is the stress tensor, u, is the unperturbed velocity field which also satisfies (4) 
and (5 ) ,  while Ui is the velocity of the ith bubble. We further require that the bubbles 
be force-free, i.e. 

q = 0. 

Note that the corresponding torque-free condition is automatically satisfied in view of 
the expression, given by (8), for the jump in shear stress along the surface of each 
bubble. 

From (1)-(8) it is evident that, in the absence of convection, the transport of energy 
is independent of that of momentum. In fact, the temperature distribution can first be 
determined through (1)-(3), and the boundary value problem (4F(8) can subsequently 
be solved to find the flow field. 

The case of a single bubble suspended in an unbounded fluid in the presence of a 
constant ambient temperature gradient, i.e. VT, = H ,  was first solved by Young et al. 
(1959), who found that the thermocapillary velocity of an isolated bubble is given by 

Moreover as shown by Subramanian (1985) this expression for the thermocapillary 
velocity of a single bubble also applies when T, is any harmonic function having 
singularities outside the space occupied by the bubble, provided that H i s  replaced by 
(VT,),, i.e. the ambient temperature gradient evaluated at the centre of the bubble. 

Consider next N bubbles whose parameters a, and dy,/dT satisfy the relations 

a1(-=)=a2(-=)= dY 1 dY 2 ... =a,v(-d7)--2pb, dYN = 

where b is a constant, so that 

q o ’  = U(0) = = up. 2 . . .  

Now, if the ambient temperature and velocity fields, T, and u,  respectively, satisfy the 
relation 

U ,  = bVT,, (1 1) 

u = bVT with p = 0, (12) 

ui = 0. (1 3 )  

then the flow field remains irrotational and is given by 

and all the bubbles will be stationary, i.e. 

The relations (12) and (13) can be easily verified by direct substitution into (4)-(8) 
and using the conditions (3) and (10). 

A physical interpretation of this result can be obtained by first considering a single 
bubble immersed in the ambient fields T,, u,  which satisfy (1 1). It can easily be verified 
then that the resulting flow field u’ = bVT’, where T‘ is the new temperature profile, 
is that formed by a stationary bubble in an irrotational inviscid flow which also satisfies 
the shear stress balance equation (8) as well as the conditions of zero force. Now 
another bubble is placed in the fields T’ and u’, which in turn can be viewed as 
the ambient fields. The same argument can be applied again except for the generation 
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of further reflections by the presence of the first bubble, which, once again, satisfy (1 1). 
Finally, using the same argument repeatedly, we conclude that if any number of 
bubbles are placed in the fields T,, u, the results (12) and (13) are valid, showing that, 
as in the case of an isolated bubble, the effects of the temperature and of the flow field 
on the velocity of the bubbles exactly balance each other. Although (10) is of course 
totally unphysical, the resulting analysis just described will prove useful later on in 
constructing the solution to our mathematical problem. 

The thermocapillary velocities of N identical bubbles immersed in a quiescent 
ambient fluid with constant temperature gradient VT, = H can be easily obtained 
using (1 1) and (13). In fact, by superimposing the uniform flow fields u, = bH and 
u, = - bH, we see that the former will 'balance ' the effect of the temperature gradient 
(cf. (1 3)), while the latter will produce a net uniform velocity. Finally, we may conclude 
that each bubble will move with the same constant velocity U(") = - b H  as if it were 
alone, in agreement with the result obtained by Acrivos et aZ. (1990). 

Another interesting application of (12) and (13), which will be found useful when 
performing the analysis of $5.1, pertains to the motion of a bubble near a stress-free 
plane on which a fixed temperature gradient V T  = H i s  imposed perpendicular to the 
plane on the side facing the bubble. By the method of images, the plane can then be 
replaced by an identical second bubble placed at the position symmetric about the 
plane and with V T  = - N o n  the other side facing the second bubble, so that the stress- 
free condition on the plane is satisfied identically. Now, repeating the same argument 
as before, i.e. by superimposing the two flows u, = f bVT, and noting that the flow 
u, = bVT, balances the effect of the temperature gradient according to (1 1)-( 13), we 
conclude that the original bubble will move with a constant velocity - bH as if the 
plane were absent. 

3. The solution of the two-bubble problem 
In this section we shall study the motion of two bubbles in an unbounded fluid 

resulting from the presence of a constant ambient temperature gradient H. The 
solution of this problem is required in 54 to determine the average velocity of a bubble 
immersed in a suspension of bubbles of a different size. 

As noted earlier, the motion of two unequal-size bubbles can be determined by first 
solving the thermal problem to find the temperature distribution and the surface 
tension distribution on the surface of the bubbles, and then solving the hydrodynamic 
problem to find the velocity of the bubbles. This problem is greatly simplified when the 
two bubbles are aligned with the temperature gradient (i.e. with axisymmetric 
geometry), so that spherical bipolar coordinates can be used, as shown by Meyyappan, 
Wilcox & Subramanian (1983) and by Keh & Chen (1990). For the general case of two 
bubbles with radii a, and a, = ha, and arbitrary orientation, Anderson (1985) applied 
the direct reflection method to determine the bubble velocities up to terms of O(R-6), 
with R = r /a l ,  where r denotes the centre-to-centre distance between the two bubbles, 
while Keh & Chen (1992, 1993) used a boundary collocation technique to find the 
mobility functions of two drops and two bubbles for h = g, 1 and 2. 

In this section, we shall show that higher accuracy can be reached by applying the 
method of twin multipole expansions, an approach that was also followed in a recent 
work by Satrape (1992). In both cases the solution is expanded as an infinite series 
whose coefficients are to be determined by satisfying the boundary conditions of the 
problem. But whereas in the approach adopted by Satrape the series expansion was 
truncated and these coefficients were determined to the desired accuracy for every value 
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of R and A, in what follows the coefficients of the multipole expansions will be 
expanded as power series in h / R  and 1/R and therefore expansions will be derived for 
the bubble velocities in a form where their dependence on R and h is factored out. 
Consequently, although our results are equivalent to those obtained by Satrape (1992), 
they are expressed in a more convenient form for the purpose of obtaining the 
ensemble-averaged velocity of a test bubble in the suspension. 

3.1. The general solution 
Owing to the linearity of the thermal and the hydrodynamic problems, the general case 
of arbitrary orientation of the two bubbles, with respect to the ambient temperature 
gradient H i s  decomposed into two problems, in which the centreline r is parallel and 
perpendicular to H, respectively ; the former case is obviously axisymmetric and the 
latter is not. 

Following Jeffrey & Onishi (1984), two sets of spherical polar coordinates @,, 6,, $) 
are chosen (a = 1,2) to describe the two-bubble geometry. 

First consider the thermal problem, which is a special case of a more general problem 
solved by Thovert & Acrivos (1989) involving two spheres of different sizes and equal 
but arbitrary heat conductivities embedded in an ambient temperature field of constant 
gradient. 

The temperature distribution outside the bubbles is expanded, for the parallel case 
( m  = 0) and the perpendicular case ( m  = 1) respectively, as 

with H = 14, where Ymn(O,, 4) are spherical surface harmonics, while the coefficients 
ggk, which depend on h and R, are to be determined from the boundary conditions. 
Expanding ggh as a double power series in terms of t, = a,/r, 

c o r n  

(15) (m+l)a  
ggk = (- 1) a, c c GFpq ta: t L  

p=o q=o 

and substituting (14) and (15) into (3), yields the recurrence relation: 

(17) Gm = A( - l)(m+l). with 100 2 

Equations (16) and (17) completely determine the temperature field. 
We next turn to the hydrodynamic problem. The pressure and flow fields can be 

written as the sum of the contributions of singularities at the centre of the bubbles 
(Jeffrey & Onishi 1984): 

and 

= p(4  + p ( 3 - 4  7 

, (18) * = *(a) + *(3-4 

where 
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(1965) and 
equations : 

1 

P 
- 

(20) 

The coefficients p$L, vKL and 4:; are functions only of r and A, and are to be 
determined from the boundary conditions. 

To simplify the application of the boundary conditions, we follow Happel & Brenner 
Jeffrey & Onishi (1984) in first constructing the following three scalar 

m=O n=m 

whereb, = p,/p,,f, = (/-a,ji,).(a.b,) and V, = (/-j3,8,).V, while the functions x:;, 
$2; and cog; can be obtained from the boundary conditions (7) and (8) .  

Next, we use the scalar equations (21)-(23) just constructed to find the relations for 
the coefficients P E L ,  i-g; and qgL in (19) and (20). 

Substituting ( 1  8) into the boundary conditions (21)-(23), expressing all the functions 
of p3-, ,  03-, and q5 in terms of r ,  p,, 8, and Q by the transformation rule (see equation 
(2.1) in Jeffrey & Onishi 1984) and then using the orthogonality relations of Ymn(8,, 4) 
yields three relations for pgk ,  i-gL and 4;;. For convenience in later computations, the 
first two relations are reorganized. Finally, we obtain the following three general 
recurrence relations for pgk, i-gL and q$L : 

The force-free condition on the bubbles yields 

pg) = pl",' = 0, 

which, together with (24)-(26) completely determine the coefficients p",, v:;, &?, and 
U,, once x ~ L ,  $$iL and w g i  have been calculated from (7), (8) ,  (21)-(23). 
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Before applying these general results to the parallel and the perpendicular cases 
separately, we define the mobility functions, which are the quantities of most interest. 

The mobility functions A,, (for the axisymmetric case) and B, (for the perpendicular 
case) (a,  = 1,2) are defined through the relations 

U, = Ma, - U:' + * U((:I,), (27) 

for the velocities of two bubbles arbitrarily oriented relative to H,  where 

In this defiition, it is implicitly assumed that, in both the parallel and perpendicular 
cases, the velocity of each bubble is parallel to H as can be easily inferred from the 
possible general form U, = [J;(h, r )  /+ f,(h, r )  rr] - H and from the symmetry of the 
problem. 

Finally, it is easy to see from the result of $ 2  that if Uin) = Up) then 
U, = U, = Uin) = u(,o). Therefore (27) and (28) give 

(29) 

(30) 

A&> 4 +Aa(a-a)(r, 4 = 1, 

B,,(r, A) + Ba(3-& 4 = 1 ' 

It is also easy to see by interchanging the labels 1 and 2, that 

So, our problem reduces to finding two independent scalar mobility functions, say, A , ,  
and B,,. 

3.2. Determination of A ,  (i.e. the parallel case) 
Consider first the axisymmetric case where the ambient temperature gradient H is 
parallel to the centreline r .  Since Uio) and Up) are also parallel to H a n d  therefore to 
r,  (27) and (28) yield 

u, = A,,  up) + A , ,  up, (33) 

where A , ,  = 1 -All  (cf. (29)), U,  = I U,l and similarly for U p )  and Up) .  In turn, A,,  can 
be determined by considering two separate cases in which the velocities of the two 
bubbles are either parallel or antiparallel to each other, i.e. Uf" = f Uf') = U 0' 

Denoting by U p )  and U'l) the resulting velocities of bubble 1, we find that 
A,,  = (Up)+  UJ19/2U0, where U(l )  (the & subscript is hereby omitted for simplicity) 
can be determined through (14)-(20), subject to the following boundary conditions (cf. 
(21)-(23)): 

xgj = - ( T 1)3-9,, (3 5) 

0% = 0, (36) 

where the k sign refers to the parallel and anti-parallel cases, respectively. 
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Now, we expand p g ,  q?; and vg; in (19) and (20): 
m m  

~ (p , '  = (f l)"-"UO C C pnpq tg tg-,, 

qE = (f l)"-"UO C C Qnpq  1," t!-", 

p=o q=o 

m m  

p=o q=o 

where, from the force-free condition on the bubbles, 

Plpq = 0. (40) 

Note that in this (i.e. the axisymmetric) case, qg, the coefficients of the azimuthal term 
in the velocity field (20), are identically zero on account of the symmetry of the 
problem. Moreover the velocities of the bubbles, defined following Jeffrey & Onishi 
(1984) as U, = U ( l ) H / H  and U, = & U@)H/H again can be expanded as 

Substituting (37)-(41) into the general recurrence relations (24)-(26) we obtain, for 
n 2 2, 

nysn - 2s - 2n + 1) 

and for n= 1, 

Finally, the values of U y )  and U'l) can be evaluated through (41)-(44). In agreement 
with the analysis preceding equation (13), we find that U y )  = U,, and on substituting 
the value of U(l )  into A,, = i(1 + U(')/U0) we find that 

1 "  

k=O q = O  k=O 
(45) 

with R = r/a,, where 

(46) 
1 k  

AE'(h) = $3kl + - C UG-q) A'. 
2 q=o 

Here U i g  is given by (44) for the anti-parallel case. The first few terms of (45) are 

This extends Anderson's (1985) result, which consists of the first three terms of (47). 
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R-1-h 

0 
0.01 
0.05 
0.10 
0.50 
1 .oo 
2.00 

TABLE 1 

20 

0.99962 
0.99967 
0.99976 
0.999 8 1 
0.99995 
0.99998 
1 .ooo 00 

h Z - 1  

0.997 34 
0.997 70 
0.998 34 
0.998 71 
0.999 64 
0.999 87 
0.99996 

10 
A = '  

0.895 34 
0.90606 
0.92943 
0.943 85 
0.97971 
0.990 88 
0.99694 

h = l  

0.71979 
0.74049 
0.791 61 
0.82645 
0.922 62 
0.959 32 
0.983 82 

h = 2  

0.495 89 
0.517 59 
0.579 60 
0.62842 
0.78802 
0.86696 
0.93447 

h = 10 

0.16307 
0.16822 
0.187 19 
0.207 9 1 
0.3 18 93 
0.41065 
0.541 42 

h = 20 

0.097 14 
0.09930 
0.10764 
0.11744 
0.18058 
0.241 50 
0.33982 

The function All(R, A)  obtained by summing the series (45) to terms 0(1/R120), 
R = r / a l ,  h = a,/al 

Some typical numerical values of A,,(R, A) obtained by summing the series (45) up 
to terms of O(l/R1'"), are given in table 1.  

3.3. Determination of B,, (i.e. the perpendicular case) 

When H is perpendicular to the centreline Y, (27) yields 

(48) 

where B,, = 1 - B,, (cf. (30)). 
Next we proceed as in the previous case, with M = 1 repiacing m = 0 in (34)-(40). 

substituting (37)-(41) into the general recurrence relations (24 t (26 )  yields, for n 2 2, 

U, = B,, Up' +BIZ  Up' ,  

and for n = l ,  

Finally, the bubble velocity U, is evaluated by substituting (52) into (41). For the 
case Uio) = Uio', we find U, = U,  = U,,, in agreement with (13) ,  and combining the 
results of the two cases Uio) = f U p ) ,  we obtain 

where 

The first few terms of (53 )  are 

(54) 

h3 h3 A5 A6 A' 4AG+hS AG+4h9 
B,,(R,A) = 1 +-+-+-+-+-+-+- 

2R3 4RG 4RS 8R9 4R1' 8R1' 16RI2 
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R-1-h 

0 
0.01 
0.05 
0.10 
0.50 
1 .oo 
2.00 

TABLE 2. 

h = L  2o h = l  10 A = '  h = l  h = 2  h = l O  h = 2 0  
1.00008 1.00055 1.02281 1.07038 1.56443 1.37727 1.43240 
1.00008 1.00052 1.02214 1.06900 1.15459 1.37620 1.431 77 
1.00007 1.00044 1.01989 1.06408 1.14768 1.37201 1.42929 
1.00005 1.00038 1.01766 1.05884 1.13986 1.36688 1.42621 
1.00002 1.00014 1.00835 1.03332 1.09521 1.32943 1.40272 
1.00001 1.00006 1.00413 1.01892 1.06321 1.28973 1.37581 
1.00000 1.00002 1.00148 1.00788 1.03216 1.22774 1.32883 

The function B,,(R, A )  obtained by summing the series (53) to terms 0(1/RlZ0), 
R = r/a,, h = a,/a, 

Again this generalizes Anderson's (1985) result, which consists of the first three terms 

Some typical numerical values of B,,(R, A)  obtained by summing the series (53) up 
to terms of 0(1/Rlz0), are given in table 2. Also we note that our numerical values for 
the velocity of the bubbles and those given by Satrape (1992) were found to agree to 
five significant figures. 

of (55) .  

5. The average velocity of a bubble 
Acrivos et al. (1990) calculated the ensemble-averaged bubble velocity in a 

monodisperse suspension of bubbles. In this section, we extend the calculation to bi- 
disperse dilute suspensions by determining the average velocity of bubble 1 in a space- 
filling suspension of bubbles 2. 

As was pointed out by Acrivos et al. (1990), such a calculation requires the 
application of a renormalization procedure which takes into account the following two 
constraints: (i) that the ensemble-averaged velocity at any point in the suspension is 
zero and (ii) that the corresponding ensemble-averaged temperature gradient equals 
the imposed temperature gradient H. In terms of ensemble averages, these constraints 
for a dilute suspension of bubbles 2 are 

uP(r)dr = 0 and (VT-H)P(r)dr = 0, (56) s s 
where P(r) is the unconditional probability that the centre of a single bubble 2 is at r,  
while u = u(r) and VT = VT(r) are, respectively, the velocity and the temperature 
gradient at the origin, when a single bubble 2 is present with its centre at r. Here, we 
have used the assumption that the suspension is so dilute that the probability of two 
bubbles 2 being at distance r - O(a, +a,)  from the origin is of O(c;) and can therefore 
be neglected, where c, is the volume fraction occupied by bubbles 2. 

Next, consider the average velocity of a test bubble 1 with its centre at the origin, 

Ul = Vl0) + ( V, - Up))  P(r I 0) dr, (57) 

where U, = U,(O I r )  is the velocity of a bubble 1 at the origin in the presence of a single 
bubble 2 with its centre at Y and P(r I 0) is the conditional probability of having a single 
bubble 2 at r given that a bubble 1 is at the origin. 

All the integrals in (56) and (57) are non-convergent, with the divergent terms 
representing the zeroth-order reflections of the velocity and temperature fields, i.e. the 
velocity of bubble 1 at the origin induced by the velocity and temperature disturbance 

s 
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of a single bubble 2 at r. Therefore, as shown by Acrivos et al. (1990), these identical 
divergent terms can be subtracted from each other, and U, can be determined by 
evaluating the remaining higher-order terms representing higher-order reflections. 

Thus we arrive at 

U ,  = U p ) +  u(r)[P(rIO)-P(r)]dr+-- (VT-H)[P(r1O)-P(r)]dr s H s 
+ W(r) P(r 10) dr, (58) s 

where W(r), defined by 

(59) 
U p  u, = Up’+u+-(VT-H)+ w, 
H 

is obtained from (27) by retaining only the terms of order higher than O(l/R3) in (47) 
and (55). 

For well-mixed suspensions of bubbles 2, the probability and conditional probability 
functions are given by (Jeffrey 1973) 

(61) 
P(rl0) = 0 for r < a,+a,, 

c, 
37Ca2 

and 
P(r 10) = P(r) = for r 2 a,  + a2, 

where we have assumed that, in the presence of the test bubble 1, the distribution of 
bubbles 2 is still uniform outside the exclusion layer r = a, + a,. Substituting the 
probability distributions (60) and (61) into the first two integrals in (58) yields 

Now, since in any physically relevant situation the surface tensions of bubbles 1 and 
2 have the same temperature dependence, i.e. dy,/dT = dy,/dT, so that Up)  = A U 0 )  1 ’  

(62) reduces to 
(63) 

where the dependence of U, on c, is given by Acrivos et al. (1990). In the above, terms 
of O(c:), U(cg), U(c, cz)  and higher have been neglected since the analysis is restricted 
to dilute suspensions. Also 

(64) 

(65) 

U, = U y {  1 -;el - S(A) c, + . . .}, 

S(h) = h + f + I@), 

A - 1  
with f(A) = __ (Ail +2&-3)  R2dR. 

On substituting (45) and (53) into (64) and (65) we then obtain 

where A::) and BS)  are given by (46) and (54). The function S(h) is tabulated in table 
3 and is plotted in figure 1 together with its asymptotic expressions to be derived below 
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10-2 lo-' 1 00 10' a 
FIGURE 1. The function S(h) with the solid line representing the computed results by summing the 
series in (66), while the dashed lines on the left and right sides are based on the asymptotic expressions 
(84), for h+O and (76), for h-t 00, respectively. 

h S(4 From (84) From (76) From (67) 
- 0.9922 0.991 1 __ 0.9854 
- 0.9858 0.9822 - 0.9729 
- 0.9744 0.9644 ~ 0.9533 

0.9663 0.9288 - 0.9323 
0.9865 0.8575 - 0.9420 
1.1112 0.7150 - 1.0741 

1 1 SO00 0.4300 0.6600 1.5000 
2 2.4372 - 2.0800 2.48 15 
4 4.4257 - 4.2900 4.4880 
8 8.4415 - 8.3950 8.4952 

16 16.4620 - 16.4475 16.4985 
32 32.4778 - 32.4737 32.4996 
64 64.4870 

~ 64.4869 64.4999 

TABLE 3. Values of the function S(h) computed by summing the series in (66) to terms 0(1/R'20) and 
then extrapolating the result, as well as from the corresponding asymptotic expressions for h 4 1 and 
A 4 1 as obtained from (84) and (76), respectively, and from (67) which consists of the first three terms 
of (66) 

1 
64 

32 
1 
16 

8 
1 
4 
1 

- 

- 
- 

for h + 00 and h + 0, respectively. Also shown in table 3 are tabulated values of the 
function 

1 1-h 
S(h) = A+-+ 

2 2(1+43' 

which is obtained from (66) by retaining only the first term of the infinite series. 
Clearly, as pointed out by one of the referees, the expression given above provides a 
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very good approximation for S(h) over the whole range of A. We note that the values 
given by Keh & Chen (1993) for S(+) and S(2) are 1.013 and 2.438, respectively, of 
which the former appears to be somewhat inaccurate. 

It is worth remarking that the first two terms in (64) for S(h) merely reflect the 
presence of the renormalization constraints. Specifically, since the motion of the 
bubbles in the suspension in the direction of H must be accompanied by a 
corresponding mean back flux of fluid so that the constraint of zero mean flux at each 
point in the suspension is satisfied, a single bubble 1 in the fluid is then carried by the 
back flow with velocity -(el Up) + cz Up)). This generates the leading term in (64). 
Similarly, the constraint on the mean temperature gradient at each point in the 
suspension requires that the average temperature gradient in the fluid be 
(1 --;el -fcJ H since the temperature gradient inside an isolated bubble is gH (Jeffrey 
1973). In turn, this change in the average temperature gradient in the fluid is 
responsible for the second term in S(h). Clearly, in view of the results in table 3, the 
sum of the two renormalization constraints provides an excellent estimate for S(h) 
when h > +. 

5. Asymptotic expressions for S(h) for the cases h % 1 and h 4 1 
Although the series expression (66) can be used to evaluate S(h) for all values of A, 

its usefulness is limited since it converges very slowly when the two bubbles have 
drastically different sizes. In fact, when h --f 0 or h + cc the thermal and hydrodynamic 
interactions are confined to a small region near the small bubble, and our method 
describing these interactions in terms of singularities at the centre of the large bubble 
is ineffective. So, it is desirable to find asymptotic expressions for S(h) when h B 1 and 
h Q 1. A similar problem was studied by Chang & Acrivos (1986, 1987) for the case of 
heat conduction from a heated sphere to a matrix containing passive spheres of a 
different conductivity. 

5.1. Asymptotic expression for S(h) when h % 1 

When h % 1, the small test bubble 1 is immersed in a suspension of large bubbles 2. To 
find the average velocity of the test bubble U, from (63)-(65), we need to find the pair 
of mobility functions A,, and B,, which, according to (33) and (48), are the velocities 
of bubble 1 when the centreline is parallel and perpendicular to the temperature 
gradient, respectively, divided by U p )  and when, in addition, U r )  = 0, that is when 
bubble 2 is passive.? 

When the two bubbles are far from each other, i.e. when R % A, (45) and (53) yield 
the outer expansions 

h3 h3 
R3 R6 (3’ A, ,  = 1---2-+O - 12 O(h), A+ co, 

h3 h3 
2R3 4R6 (:I B,, = l+-+-+O 8 , 12 O(h), h+m, 

where I = R-A. 
Next, let us consider the case where the small bubble 1 is close to the large passive 

bubble 2, i.e. when 1 - O(1). First, we estimate the order of magnitude of the velocity 
of the large passive bubble. According to Faxin’s law (Rallison 1978), it equals the 

t A passive bubble is here defined as having its surface tension independent of temperature, i.e. 
dy/dT = 0. 



60 Y.  Wang, R. Mauri and A.  Acrivos 

velocity at its centre induced by the singularities at the centre of the small active bubble. 
Since the latter is force-free, the induced velocity must decay at least as fast as 
O(a;/rz), which contributes to A,, and B,, an O(1/h2) correction. But, since we wish 
to determine S(h) only up to O(l /h) ,  (63)-(65) show the the motion of the large bubble 
has only a smaller order effect on S(h) so that the large bubble can be viewed as being 
stationary to this order of approximation. 

Next, let us determine the inner expansions for A,,, i.e. the velocity of a small active 
bubble near a large passive one in the axisymmetric case, where the centreline is parallel 
to the temperature gradient. The temperature distribution in the absence of bubble 1 
is (Acrivos et al. 1990): 

Now, the presence of the small bubble 1 induces a temperature disturbance T' such that 
a(T'+ T , ) / a p ,  = 0 is satisfied on the surface of the small bubble. Expanding Tk about 
the centre of the small bubble, this boundary condition becomes 

while the boundary condition on the surface of the large bubble is still aT'/ap, = 0 at 
pz = a, since aT2/app, = 0. 

Next we examine the effect of each term in the above expansion separately, noting 
that, within the inner region 1 < 1 < O(h), the large bubble can be replaced, as far as 
its first-order effects on the small bubble are concerned, with a non-conducting, stress- 
free planar wall. 

The first term in the bracket of the right-hand side of (70) corresponds to the case 
when a non-conducting bubble has been placed near a plane on which the temperature 
gradient perpendicular to it has been set equal to 31H/h. But as shown in $2, the 
velocity of the bubble is then the same as that of an isolated bubble in a linearly varying 
ambient temperature field, hence 

On the other hand, the velocity corresponding to the second term on the right-hand 
side of (70) can be obtained using the procedure of $3 .  Specifically, by the method of 
images, the plane can be replaced by an image bubble so that both the temperature and 
the velocity fields are symmetric about the plane thereby satisfying identically the non- 
conducting and stress-free boundary conditions on the plane. The problem then 
becomes that of determining the motion of two identical non-conducting bubbles in an 
ambient temperature field T,, which is 

on the side of the original bubble and symmetrically on the side of the image bubble. 
In turn, the velocities of the two bubbles are calculated by applying the technique of 
$ 3  to the solution of the above problem, which gives for the velocity of bubble 1 

where the C,, with C, =-g ,  C, = C, = 0, C, =-&, C, =0 ,  C 7 =-&, ..., are 
constants found by solving the two-bubble problem. 
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Finally, combining the contributions from the two terms, we obtain 

31 1 a, C, 
A,,=-+- h h n=2 c -+o($, 1" 1 < I<O(h) ,  h+m. 

We next apply the same method to determine the inner expansion for B,,, i.e. the 
velocity of a small active bubble near a large passive one when H i s  perpendicular to 
the centreline of the two bubbles. 

Expanding T k  about the centre of bubble 1, the boundary condition on the small 
bubble can be written as 

The first term corresponds to the case where a bubble is placed near a non- 
conducting, stress-free wall with a constant temperature gradient parallel to the plane 
in the direction of H.  Once again, in view of the result of 52, the velocity of the bubble 
remains unchanged by the presence of the plane, i.e. 

j+-J - q o ' .  
l -  c' 2 2h 311 

The velocity corresponding to the second term can be found by a similar method as 
that used in the axisymmetric case to find (71). The result is 

(74) 

B,, = (3 31) +- c -+o Ck (i2), - 1 < I <  O(h), h+m. (75) 2 2h A,=, I" 

We now substitute the inner and outer asymptotic expansions for A,,  and B,, into 
(65) to determine the asymptotic expression for S(h). To this end, we divide the interval 
of integration into an inner region A+ 1 d R < A+ O(h) and an outer region 
h+O(h) d R d 00, and note that within each domain we have a locally valid 
asymptotic expression for A,, and Bll. 

By substituting (68) and (69) into (65) we find that, in the outer region, 
Zout = O ( l / h 2 ) ,  i.e. the contribution of the outer region to S(h) is negligible to this order 
of approximation. 

On the other hand, in the inner region, substituting (72) and (75) into (65), and 
noting that R is basically equal to h in this region, we obtain 

Here, since the sum containing the first k terms was found to be essentially linear in l/k 
for k > 20, the summation was determined by evaluating its first 30 terms and 
extrapolating the result. 

Finally, by combining the results for the two regions, we obtain the following 
asymptotic result : 

1 0.84 
2 h  

S(h)=h+---+O 

3 F L M  261 
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gradient for sufficiently large values of h even if c2 is small. 
Clearly, in view of (63), a bubble of type 1 could move against the temperature 

5.2. Asymptotic expression for S(h) when h < I 
We finally consider the other limiting case, i.e. h = a,/a, < 1, and find the average 
velocity of a large test bubble 1 immersed in a suspension of small bubbles 2. It turns 
out, however, that it is easier to determine the velocity of a large passive bubble in the 
presence of a small active one, i.e. A,, and B,, for the parallel and perpendicular cases, 
respectively. 

When the two bubbles are far from each other, i.e. when R % 1, (45) and (53) yield 
the outer expansions: 

Next we derive the inner expansions for A,, and B,, when the small bubble 2 is close 
to the large bubble 1, i.e. when 1- 0(1), where ( R -  l ) /h .  To begin with, we note 
that the velocity of a large passive bubble immersed in the flow field generated by a 
small active one can be determined using FaxCn's law, in terms of the strength of the 
singularities at the centre 0, of the small bubble by evaluating the velocity they induce 
at the centre of the large bubble. 

But, once again, since, up to leading order, the strengths of the singularities at 0, are 
affected only if 1- 0(1), these can be determined by replacing the passive bubble by 
a non-conducting, stress-free planar wall. 

We start by considering the axisymmetric case. The strengths of the singularities at 
0, can be evaluated by expanding the boundary conditions of the temperature field on 
the surface of the small bubble, 

: p,p2+0(h4)  at p, = a,. (79) 1 a r .  

The first term in the expansion corresponds to the constant-gradient case. Applying 
the method of images as in g5.l we see that, in this case, the flow field is irrotational 
and decays as O(ha3,/p;), thereby contributing to the velocity of bubble 1, or to A,, an 
0(h4)-term and to S(h) an 0(h2)-term, which is negligible to this order of 
approximation. 

The second term in the temperature expansion is a quadratic distribution. The 
leading term of the flow field induced by bubble 2 is an O(hai/pi) stresslet term 
(Anderson 1985), which contributes to A,, an 0(h4)-term and to S(h) an O(h)-term, 
while the contributions from higher-order singularities at the centre of bubble 2 (cf. 
(20)) are of smaller order and thus negligible. The strength of the stresslet at the centre 
of the small bubble or pg)  can be found as an intermediate result in deriving (71). 
Finally, substitution of p g )  into (20), yields U, and then A,,, 

where the D, are constants that can be found using the intermediate result in $5.1 with 
the first few of them being D, = 2, D, = D, = 0, D,  = &, D, = 0,  D, = & . . . . 
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Now let us turn to the perpendicular case, where the temperature expansion is 

63 

Once again, the case corresponding to the constant-gradient term can be treated by 
the method of images and the flow field is found to be irrotational. This decays as 
O(ai/pi) which corresponds to a force quadrupole term and contributes to S(h) an 
O(h)-term, while the contributions of the higher-order singularities are of smaller order 
and thus negligible. In turn, the strength of this force quadrupole at the centre of the 
small bubble can be found using the intermediate results of $3.3 for identical bubbles.? 
Thus, on applying FaxCn's law, the velocity of the large bubble is found to be 

withE = - 3  E = E  =O,E --A E = O  E = - 3  
3 8' 4 5 6 - 1 6 3 7  > 8  4, .... 

The second term in the temperature expansion (81) corresponds to a quadratic 
temperature distribution. The leading term of the velocity field induced by this 
singularity at the centre of the small bubble is an O(hai/pi) stresslet term, while all the 
other terms are of smaller order and can be neglected. However, this term does not 
contribute to U, which here is perpendicular to r,  since a stresslet only induces a 
velocity in the radial direction from its position. Therefore, we conclude that the effect 
of the second term on U, is smaller than O(h3), so that its contribution to S(h) is 
negligible. Therefore, 

(83) B,, = - 3 3 + ~ 3  c O0 1 ; ; - + ~ ( ~ 4 ) ,  E n  i-  ~ ( i ) ,  A+O. 
n=3 I 

Now, as in $5.1 we use the inner and outer expansions for A, ,  and B,,, (77), (78) (80) 
and (83) to evaluate the integral in (65) and obtain the asymptotic expression for S(h). 
First, we divide the interval of integration into an inner region 1 + h < R < 1 + R, and 
an outer region 1 + R, < R < KI with R, - O(l), but note that the integral in each 
region will depend on the value of R,. This difficulty can be circumvented 
constructing a uniformly valid expression for the integrand (Van Dyke 1964) 
equivalently rewriting (65) as 

by 
or 

and letting R, --f co, whereJ;,,(R) and f,,,(R) refer to the integrand in (65) evaluated 
using, respectively, the inner and outer expansions for A,,  and Biz. Upon evaluating 
the sum by the same method as that used in arriving at (76), we find that 

S(h) = 1 -0.57h+ O(h2), h+O. (84) 
This result for S(h) can be interpreted in terms of the effective continuum approach 

(Acrivos & Chang 1986) by noting that the suspension of small bubbles of vanishing 
size acts as an effective continuum with effective viscosity p* = p( 1 + c,) and effective 
conductivity k* = k(1 -gc,), with k being the conductivity of the pure fluid. But a large 
bubble immersed in such an effective continuum will move, according to (9), with 

t In this case, although from (1 3) the velocities of the bubbles are the same as if they were isolated, 
the strength of the force quadrupole depends on the distance between the two bubbles. 

3-2 



64 Y. Wang, R. Mauri and A .  Acrivos 

velocity (1 -c2)  Uio), in agreement with the first term in (84), which therefore reflects 
the effect of the increase in the viscosity of the surrounding fluid, due to the presence 
of the small bubbles, on the velocity of the large bubble. 

As noted earlier, the function S(h) is seen plotted in figure 1 together with its two 
asymptotic expressions as obtained for (84) and (76) for, respectively, h +- 0 and h + cc. 

This work was supported in part by the National Science Foundation grant CTS- 
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